This is a demo store. No orders will be fulfilled.
Utilization of nitrogen, sulfur co-doped porous carbon micron spheres as bifunctional electrocatalysts for electrochemical detection of cadmium, lead and mercury ions and oxygen evolution reaction
The development of high-performance bifunctional electrocatalysts for oxygen evolution reaction and heavy metal ion (HMI) detection is significant and challenging. Here, a novel nitrogen, sulfur co-doped porous carbon sphere bifunctional catalyst was designed and fabricated by hydrothermal followed by carbonization using starch as carbon source and thiourea as nitrogen, sulfur source for HMI detection and oxygen evolution reactions. Under the synergistic effect of pore structure , active sites and nitrogen, sulfur functional groups, C-S 0.75 -HT-C 800 demonstrated excellent HMI detection performance and oxygen evolution reaction activity. Under optimized conditions, the detection limits (LODs) of C-S 0.75 -HT-C 800 sensor were 3.90, 3.86 and 4.91 nM for Cd 2+ , Pb 2+ and Hg 2+ when detected individually; and the sensitivities were 13.12, 19.50 and 21.19 μA/μM. The sensor also obtained high recoveries of Cd 2+ , Hg 2+ and Pb 2+ in river water samples. During the oxygen evolution reaction, a Tafel slope of 70.1 mV/dec and a low overpotential of 277 mV were obtained for C-S 0.75 -HT-C 800 electrocatalyst with a current density of 10 mA/cm 2 in basic electrolyte. This research offers a neoteric and simple strategy in the design as well as fabrication of bifunctional carbon-based electrocatalysts.