Il s'agit d'un magasin de démonstration. Aucune commande ne sera honorée.
Ratiometric and visual determination of copper ions with fluorescent nanohybrids of semiconducting polymer nanoparticles and carbon dots
Developing nanohybrid composition based fluorescent carbon dots (CDs) for ratiometric detection of copper ions is highly appealing. Herein, a ratiometric sensing platform (GCDs@RSPN) for copper ions detection has been developed by loaded green fluorescence carbon dots (GCDs) on the surface of red emission semiconducting polymer nanoparticles (RSPN) through electrostatic adsorption. The GCDs, featuring abundant amino groups, can selectively bind copper ions to induce the photoinduced electron transfer, leading to fluorescence quenching. A good linearity within the range of 0–100 μM is obtained, and the limit of detection (LOD) is 0.577 μM by using obtained GCDs@RSPN as ratiometric probe to detect copper ion. Moreover, the paper-based sensor derived from GCDs@RSPN was successfully applied for the visual detection of Cu 2+ .