This is a demo store. No orders will be fulfilled.

Investigating the effect of volatility on the hygroscopicities of acetate nanoparticle aerosols by surface plasmon resonance microscopy

Journal of Environmental Sciences [2024]
Bo Yang, Zhibo Xie, Jianguo Liu, Huaqiao Gui, Jiaoshi Zhang, Xiuli Wei, Zetao Fan, Douguo Zhang
ABSTRACT

Under high relative humidity (RH) conditions, the release of volatile components (such as acetate) has a significant impact on the aerosol hygroscopicity. In this work, one surface plasmon resonance microscopy (SPRM) measurement system was introduced to determine the hygroscopic growth factors (GFs) of three acetate aerosols separately or mixed with glucose at different RHs. For Ca(CH 3 COO) 2 or Mg(CH 3 COO) 2 aerosols, the hygroscopic growth trend of each time was lower than that of the previous time in three cyclic humidification from 70% RH to 90% RH, which may be due to the volatility of acetic acid leading to the formation of insoluble hydroxide (Ca(OH) 2 or Mg(OH) 2 ) under high RH conditions. Then the third calculated GF (using the Zdanovskii-Stokes-Robinson method) for Ca(CH 3 COO) 2 or Mg(CH 3 COO) 2 in bicomponent aerosols with 1:1 mass ratio were 3.20% or 5.33% lower than that of the first calculated GF at 90% RH. The calculated results also showed that the hygroscopicity change of bicomponent aerosol was negatively correlated with glucose content, especially when the mass ratio of Mg(CH 3 COO) 2 to glucose was 1:2, the GF at 90% RH only decreased by 4.67% after three cyclic humidification. Inductively coupled plasma atomic emission spectrum (ICP-AES) based measurements also indicated that the changes of Mg 2+ concentration in bicomponent was lower than that of the single-component. The results of this study reveal thatduring the efflorescence transitions of atmospheric nanoparticles, the organic acids diffusion rate may be inhibited by the coating effect of neutral organic components, and the particles aging cycle will be prolonged.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.