This is a demo store. No orders will be fulfilled.

Determination of ribavirin by molecularly imprinted electrochemical sensors using pyrro-1-propionyl-alaninoyl-chitooligosaccharide and pyrrole as bifunctional monomers on Prussian blue-gold nanocomposite films

JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS [2023]
Qing Gao, Dangqin Jin, Jiaqi Xu, Hao Huang, Huanren Cheng, Huaiguo Xue
ABSTRACT

Herein, we developed a highly sensitive imprinted electrochemical sensor for the trace detection of ribavirin (RBV) using pyrrole (PYR) and pyrro-1-propionyl-alaninoyl-chitooligosaccharides (PPACO) as bifunctional monomers on Prussian blue-gold nanocomposite films. PPACO had strong molecular effect on RBV molecule and was selected by quantitative calculations. After the deposition of the Prussian blue-gold nanocomposite on a glassy carbon electrode (GCE) surface, a 4-aminothiophenol layer successfully self-assembled on the surface. Subsequently, the molecularly imprinted membrane (MIM) was subjected to electrochemical polymerization on the electrode surface using RBV as the template and PPACO and PYR as the two monomers. After eluting the RBV molecules from the MIM, the fabricated RBV-MIM/Fn-Au-PB/GCE exhibited the specific adsorption of RBV. Under optimal conditions, differential pulse voltammetry (DPV) was used to measure the performance of the synthesized sensor, which exhibited a linear relationship between the decreasing peak current and RBV concentration from 0.015 to 3.5 μM with a low detection limit of 3 nM (S/N = 3). As a proof of concept, RBV-MIM/Fn-Au-PB/GCE was also applied to monitor the RBV content in RBV granules. It showed a satisfactory recovery (96.5–99.2%) with a relative standard deviation of less than 3.5% (n = 5), and thus, we believe it has potential for practical applications.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.