This is a demo store. No orders will be fulfilled.

Controllable preparation of mesoporous spike gold nanocrystals for surface-enhanced Raman spectroscopy detection of micro/nanoplastics in water

ENVIRONMENTAL RESEARCH [2023]
Yazhou Qin, Jiaxin Qiu, Nan Tang, Yuanzhao Wu, Weixuan Yao, Yingsheng He
ABSTRACT

Microplastics and nanoplastics are emerging classes of environmental contaminants that pose significant threats to human health. In particular, small nanoplastics (<1 μm) have drawn considerable attention owing to their adverse effects on human health; for example, nanoplastics have been found in the placenta and blood. However, reliable detection techniques are lacking. In this study, we developed a fast detection method that combines membrane filtration technology and surface-enhanced Raman spectroscopy (SERS), which can simultaneously enrich and detect nanoplastics with sizes as small as 20 nm. First, we synthesized spiked gold nanocrystals (Au NCs), achieving a controlled preparation of thorns ranging from 25 nm to 200 nm and regulating the number of thorns. Subsequently, mesoporous spiked Au NCs were homogeneously deposited on a glass fiber filter membrane to form an Au film as a SERS sensor. The Au-film SERS sensor achieved in-situ enrichment and sensitive SERS detection of micro/nanoplastics in water. Additionally, it eliminated sample transfer and prevented the loss of small nanoplastics. Using the Au-film SERS sensor, we detected 20 nm to 10 μm standard polystyrene (PS) microspheres with a detection limit of 0.1 mg/L. We also realized the detection of 100 nm PS nanoplastics at the 0.1 mg/L level in tap water and rainwater. This sensor provides a potential tool for rapid and susceptible on-site detection of micro/nanoplastics, especially small-sized nanoplastics.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.