This is a demo store. No orders will be fulfilled.
In situ synthesis of flower-like ZnO/ZnHCF composites for cesium removal from water
In this research, composites of ZnO in the form of flowers with ZnFe Prussian blue analogues were prepared by in situ synthesis, and found the synthesis conditions with maximum removal efficiency. The flower-like ZnO enhances the dispersion of the ZnHCF nanoparticles, which means that the Prussian blue analogue has higher adsorption utilisation. In addition, various adsorption experiments revealed that the adsorbent has the best adsorption capacity under neutral aqueous solution conditions and is capable of high removal rate adsorption in multi-ion aqueous solution systems. Apart from this, the adsorption process satisfies a pseudo-second-order kinetic model, indicating that chemisorption dominates, and the Langermuir adsorption model suggests that adsorption occurs on a monolayer and is favourable, with a maximum adsorption capacity of 322.4 mg/g, while adsorption is a spontaneous, heat-absorbing process. Finally, a comparison with other Prussian blue analogues revealed the potential of flower-like ZnO/ZnHCF for efficient removal of Cs + from water.