This is a demo store. No orders will be fulfilled.

Promoted wet peroxide oxidation of chlorinated volatile organic compounds catalyzed by FeOCl supported on macro-microporous biomass-derived activated carbon

JOURNAL OF COLLOID AND INTERFACE SCIENCE [2023]
Cong Pan, Wenyu Wang, Chenchong Fu, Jong Chol Nam, Feng Wu, Zhixiong You, Jing Xu, Jinjun Li
ABSTRACT

Chlorinated volatile organic compounds (CVOCs) are a recalcitrant class of air pollutants , and the strongly oxidizing reactive oxygen species (ROS) generated in advanced oxidation processes (AOPs) are promising to degrade them. In this study, a FeOCl-loaded biomass-derived activated carbon (BAC) has been used as an adsorbent for accumulating CVOCs and catalyst for activating H 2 O 2 to construct a wet scrubber for the removal of airborne CVOCs. In addition to well-developed micropores, the BAC has macropores mimicking those of biostructures, which allows CVOCs to diffuse easily to its adsorption sites and catalytic sites. Probe experiments have revealed HO • to be the dominant ROS in the FeOCl/BAC + H 2 O 2 system. The wet scrubber performs well at pH 3 and H 2 O 2 concentrations as low as a few mM. It is capable of removing over 90% of dichloroethane, trichloroethylene, dichloromethane and chlorobenzene from air. By applying pulsed dosing or continuous dosing to replenish H 2 O 2 to maintain its appropriate concentration, the system achieves good long-term efficiency. A dichloroethane degradation pathway is proposed based on the analysis of intermediates. This work may provide inspiration for the design of catalyst exploiting the inherent structure of biomass for catalytic wet oxidation of CVOCs or other contaminants.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.