This is a demo store. No orders will be fulfilled.

Preparation of core–shell hordein/pectin nanoparticles as quercetin delivery matrices: Physicochemical properties and colon-specific release analyses

FOOD RESEARCH INTERNATIONAL [2023]
Xiaomin Zhang, Zihao Wei, Yuanjing Sun, Tian Luo, Changhu Xue
ABSTRACT

Quercetin (Que) is a hydrophobic flavanol that has the potential to prevent colon diseases. This study aimed to design hordein/pectin nanoparticle as a colon-specific delivery system for quercetin. The encapsulation efficiency, physicochemical stability and release properties of the nanoparticles were estimated. The FTIR and secondary structure analysis indicated that hydrogen bonds, hydrophobic interactions and electrostatic attractions were formed in the quercetin-loaded hordein/pectin nanoparticles (Que-hordein/pectin NPs). In comparison to Que-hordein NPs, Que-hordein/pectin NPs exhibited better colloidal stability (physical, UV light, heating and salt). Furthermore, the release properties studies showed that pectin coating restrained the premature release of Que from hordein NPs in gastric fluid and intestinal fluid. In-vitro release, when the Que-hordein/pectin NPs were exposed to simulated colonic fluid (SCF) for 6 h, quercetin was greatly released from the hordein/pectin NPs (15.29 ± 1.17% – 80.60 ± 1.78%). In-vivo release, the concentration of Que (μg/g) in Que-hordein/pectin NPs was 2.18 times higher than Que-hordein NPs in colon tissue after 6 h of oral administration. This study suggests that Que-hordein/pectin NPs have promising applications in the specific delivery and release of quercetin to the colon.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.