This is a demo store. No orders will be fulfilled.

Multifunctional composite fabric with outstanding self-cleaning and high photothermal effect for biomechanical energy harvester

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING [2023]
Ling-Zhi Huang, Meng-Yu Qi, Wei Zhang, Wen-Yan Guo, Ming-Guo Ma
ABSTRACT

Flexible fabrics have gained widespread attention in thermal management and energy harvesting recently due to their fascinating merits of flexibility and breathability. However, the simple and efficient integration of multiple functions into a single fabric remains a challenge. Herein, a multifunctional fabric was prepared by in-situ polymerized polyaniline (PANI) and polypyrrole (PPy) onto air-laid paper (AP), followed by wrapping with hydrophobic reagent. The synergistic effect of PANI and PPy networks endowed the composite fabric with excellent photothermal performance. Additionally, the smart fabrics exhibited the terrific self-cleaning property. More promisingly, triboelectric nanogenerator (TENG) based on the smart fabrics as effective positive friction material could transform electrical signal with through collecting energy from small human movement, delivering charge of 82.7 nC, open circuit voltage of 213.6 V, and short circuit current of 14.7 μA. This work provides new insights for the study of the next generation lightweight, portable thermal management fabric.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.