This is a demo store. No orders will be fulfilled.

The Synthesis of Glycerol Carbonate from Glycerol and Carbon Dioxide over Supported CuO-Based Nanoparticle Catalyst

MOLECULES [2023]
Jassim Mohamed Hamed Al-Kurdhani, Huajun Wang
ABSTRACT

A series of supported CuO-based nanoparticle catalysts were prepared by the impregnation method and used for the synthesis of glycerol carbonate from glycerol and CO2in the presence of 2-cyanopyridine as a dehydrant and DMF as a solvent. The effects of supports (activated alumina, silicon dioxide, graphene oxide, graphene, and activated carbon), CuO loading amount, calcination temperature, and reaction parameters on the catalytic activity of the catalyst were investigated in detail. XRD, FTIR, SEM, BET, and CO2-TPD were used for the characterization of the prepared catalysts. It is found that CuO/Al2O3shows a higher catalytic activity, which depends on the CuO loading amount and calcination temperature. The surface area and number of basic sites of the catalyst exhibit a crucial effect on the catalytic activity of CuO/Al2O3. Furthermore, there is a synergistic effect between the catalyst and 2-cyanopyridine where the former has a higher activation ability for glycerol and the latter acts not only as a dehydrant, but also as a promoter for CO2activation. Recycling experiments reveal that this catalyst can be reused for at least five cycles without any inactivation. Based on the experiment results and FTIR characterization, a possible reaction mechanism for the carbonylation of glycerol and CO2is proposed.Keywords:glycerol;glycerol carbonate;carbon dioxide;2-cyanopyridine;CuO/Al2O3

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.