This is a demo store. No orders will be fulfilled.
Dual-potential encoded electrochemiluminescence for multiplexed gene assay with one luminophore as tag
Multiplexed gene assay for simultaneously detecting the multi-targets of nucleic acids is strongly anticipated for the accurate diseases diagnosis and prediction, and all commercial available gene assays for IVD are a kind of single-target assay. Herein, a dual-potential encoded and coreactant-free electrochemiluminescence (ECL) strategy is proposed for the multiplexed gene assay, which can be conveniently carried out by directly oxidizing the same luminescent tag of dual-stabilizers-capped CdTe nanocrystals (NCs). The CdTe NCs linked with sulfhydryl-RNA via Cd−S bond merely exhibits one ECL process around 0.32 V with a narrow triggering-potential-window of 0.35 V, while CdTe NCs linked with amino-RNA via amide linkage solely gives off one ECL process around 0.82 V with a narrow triggering-potential-window of 0.30 V. Multiplexing ECL of both sulfhydryl-RNA-functionalized CdTe NCs and amino-RNA-functionalized CdTe NCs can be utilized to simultaneously detect the open reading frame 1ab (ORF1ab) and the nucleoprotein (N) genes without crosstalk , in which ECL of sulfhydryl-RNA-functionalized CdTe NCs can dynamically determine ORF1ab from 200 aM to 10 fM with a limit of detection (LOD) of 100 aM, while ECL of amino-RNA-functionalized CdTe NCs can linearly detect N gene from 5 fM to 1 pM with a LOD of 2 fM. Post-engineering CdTe NCs with RNA in a labeling-bond engineering way would provide a potential-selective and encoded ECL strategy for multiplexed gene assay with one luminophore.