This is a demo store. No orders will be fulfilled.

Enhanced removal of Cu(II) ions from aqueous solution by in-situ synthesis of zeolitic imidazolate framework-67@wood aerogel composite adsorbent

Wood Material Science & Engineering [2023]
Gang Zhu, Chaoling Zhang, Kaiqian Li, Xupeng Zhang, Shuduan Deng
ABSTRACT

Zeolitic imidazolate frameworks (ZIFs) were considered to be one of the most promising emerging nanoporous adsorbents capable of efficiently removing a variety of heavy metals ions from wastewater. However, due to the powdered crystalline state, easy aggregation and instability of ZIFs materials, their actual large-scale applications in water matrices are significantly hindered. Compounding ZIFs with self-supporting porous wood aerogel (WA) to obtain advanced composites is excepted to further enhance their adsorption performance with higher practicability. Herein, a novel Zeolitic Imidazolate Framework-67 (ZIF-67)@wood aerogel (denoted as ZIF-67@WA) adsorbent for efficient capture of Cu(II) ions was successfully fabricated via in situ growth of Cobalt-based ZIF-67 particles onto the WA scaffold. Benefiting from the integration of unique three-dimensional porous structures and abundant accessible active sites, the obtained ZIF-67@WA hybrids exhibited fast adsorption kinetics and the maximum adsorption capacity towards Cu(II) calculated from the Langmuir model was 254.84 mg g−1. The adsorption kinetic and isotherm studies were consistent with pseudo-second-order model (R2 = 0.991) and Langmuir model (R2 = 0.973), indicating the adsorption of Cu(II) was a monolayer chemisorption process. This work proposed a new route for designing and constructing functionalized MOF@biomass hybrid materials for heavy metal wastewater treatment.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.