This is a demo store. No orders will be fulfilled.

Multifunctional wood-based hydrogels for wastewater treatment and interfacial solar steam generation

CHEMICAL ENGINEERING JOURNAL [2023]
Deqi Fan, Yi Lu, Xueling Xu, Yicheng Tang, Hao Zhang, Yan Mi, Xiaofei Yang
ABSTRACT

Elaborately designing multifunctional energy conversion materials is vital to promoting renewable energy conversion. Herein, we report a novel approach in which photocatalytic materials and photothermal components are embedded simultaneously into porous delignified wood to construct wood-based hybrid hydrogels for water decontamination, hydrogen generation and freshwater production. Well-designed all-in-one system elaborately interfaces hydrogen-evolving semiconductor CdS with MoSe 2 that functions as co-catalyst and also possesses photothermal effect to simultaneously drive the removal of pollutants, hydrogen production and solar steam generation with high efficiency. The multifunctional system demonstrates a hydrogen evolution rate of 9.7 mmol g –1 h −1 and a high solar evaporation rate of 1.92 kg m −2 h −1 with an energy conversion efficiency up to 90.7% under one sun illumination. The encapsulation of photothermal-assisted photocatalytic systems with hydrogels effectively prevents toxic volatile organic compounds (VOCs) from being evaporated without deteriorating the solar steam generation performance. This study provides new insights into the rational design of novel multifunctional materials for environmental remediation and energy sustainability.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.