This is a demo store. No orders will be fulfilled.
Extracting dialdehyde cellulose nanocrystals using choline chloride/urea-based deep eutectic solvents: A comparative study in NaIO4 pre-oxidation and synchronous oxidation
Dialdehyde cellulose nanocrystals (DCNC) are defined as C2 and C3 aldehyde nanocellulose, which can be used as raw materials for nanocellulose derivatization , owing to the high activity of aldehyde groups. Herein, a comparative study in NaIO 4 pre-oxidation and synchronous oxidation is investigated for DCNC extraction via choline chloride (ChCl)/urea-based deep eutectic solvent (DES). Ring-liked DCNC with an average particle size of 118 ± 11 nm, a yield of 49.25 %, an aldehyde group content of 6.29 mmol/g, a crystallinity of 69 %, and rod-liked DCNC with an average particle size of 109 ± 9 nm, a yield of 39.40 %, an aldehyde group content of 3.14 mmol/g, a crystallinity of 75 % can be extracted via optimized DES treatment combined with pre-oxidation and synchronous oxidation, respectively. In addition, the average particle size, size distribution, and aldehyde group content of DCNC were involved. TEM , FTIR , XRD, and TGA results reveal the variation of microstructure, chemical structure, crystalline structure, and thermostability of two kinds of DCNC during extraction even though the obtained DCNC exhibiting different micromorphology , pre-oxidation, or synchronous oxidation during ChCl/urea-based DES treatment can be considered as an efficient approach for DCNC extraction.