This is a demo store. No orders will be fulfilled.

Self-Assembled Bifunctional Copper Hydroxide/Gold-Ordered Nanoarray Composites for Fast, Sensitive, and Recyclable SERS Detection of Hazardous Benzene Vapors

Nanomaterials [2023]
Yanyan Lu, Xuzhou Yuan, Cuiping Jia, Biao Lei, Hongwen Zhang, Zhipeng Zhao, Shuyi Zhu, Qian Zhao, Weiping Cai
ABSTRACT

Volatile organic compounds (VOCs), particularly monoaromatic hydrocarbon compounds (MACHs), pose a potential risk to the atmospheric environment and human health. Therefore, the progressive development of efficient detection methodologies is a pertinent need, which is still a challenge at present. In this study, we present a rapid and sensitive method to detect trace amounts of MACHs using a bifunctional SERS composite substrate. We prepared an Au/SiO2enhanced layer and a porous Cu(OH)2adsorption layer via microfluidic-assisted gas-liquid interface self-assembly. The composite substrate effectively monitored changes in benzaldehyde using time-varying SERS spectra, and track-specifically identified various VOCs such as benzene, xylene, styrene, and nitrobenzene. In general, the substrate exhibited a rapid response time of 20 s to gaseous benzaldehyde, with a minimum detection concentration of less than 500 ppt. Further experimental assessments revealed an optimum Cu(OH)2thickness of the surrounding adsorption layer of 150 nm, which can achieve an efficient SERS response to MACHs. Furthermore, the recoverable and reusable property of the composite substrate highlights its practicality. This study presents a straightforward and efficient approach for detecting trace gaseous VOCs using SERS, with significant implications in the designing of SERS substrates for detecting other VOCs.Keywords:VOCs;bifunctional copper hydroxide/gold ordered nanoarray composites;self-assembly;fast and sensitive SERS detection;recyclable SERS substrate

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.