This is a demo store. No orders will be fulfilled.

High dispersion dendritic fibrous morphology nanospheres for electrochemical CO2 reduction to C2H4

JOURNAL OF COLLOID AND INTERFACE SCIENCE [2023]
Zhixiu Yang, Xiu Wen, Xiaoxuan Guo, Yong Chen, Ruiping Wei, Lijing Gao, Xiaomei Pan, Jin Zhang, Guomin Xiao
ABSTRACT

The electrochemical CO 2 reduction to specific multi-carbon product on copper-based catalysts is subjected to low activity and poor selectivity . Herein, catalyst structure, morphology, and chemical component are systematically studied for bolstering the activity and selectivity of as-prepared catalyzers in this study. Dendritic fibrous nano-silica spheres favor the loading of active species and the transport of reactant from the central radial channel. Cu/DFNS with high dispersion active sites are fabricated through urea-assisted precipitation way. The coexistence of Cu(I)/Cu(II) induces a close combination of Cu active sites and CO 2 on the Cu/DFNS interface, promoting the CO 2 activation and C C coupling. The Cu–O–Si interface (Cu phyllosilicate) can improve CO 2 and CO attachment. Cu/DFNS show the utmost Faradaic efficiency of C 2 H 4 with a value of 53.04% at −1.2 V vs. RHE. And more importantly, in-situ ATR-SEIRAS reveals that the C C coupling is boosted for effectively producing C 2 H 4 as a consequence of the existence of *CO L , *COOH, and *COH intermediates. The mechanism reaction path of Cu/DFNS is inferred to be *CO 2  → *COOH → *CO → *CO*COH → C 2 H 4 . Our findings will be helpful to gain insight into the links between morphology, texture, chemical component of catalyzers, and electrochemical reduction of CO 2 , providing valuable guidance in the design of more efficient catalysts.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.