This is a demo store. No orders will be fulfilled.
Multifunctional Short-Chain 2-Thiophenealkylammonium Bromide Ligand-Assisted Perovskite Quantum Dots for Efficient Light-Emitting Diodes
Lead halide perovskite quantum dots (QDs) have attracted great interest for application in light-emitting diodes (LEDs) due to their high photoluminescence quantum yield (PLQY), solution processability, and high color purity, showing great potential for next-generation full-color display and lighting technologies. Conventional long-chain insulating oleic acid (OA)/oleamine (OAm) ligands exhibit dynamic binding to the surface of QDs, resulting in a plethora of extra surface defects and inferior optoelectronic properties. Herein, a sole multifunctional ligand with optimized carbon chain length, that is, 2-thiophenepropylamine bromide (ThPABr), was creatively designed and introduced into CsPbBr3 QDs, which not only replaces OAm and provides a bromine source but also coordinates with the uncoordinated surface Pb2+ of QDs through the thiophene, passivating surface defects and increasing the PLQY of the film to 83%. More importantly, the interaction between the electron donor–thiophene ring and QDs can enhance electron injection and improve carrier balance. The resulting green LED exhibited significant performance improvement, showing ultrahigh spectral stability under high operating voltage, achieving a maximum external quantum efficiency of 10.5%, and extending the operating lifetime to 5-fold that of the reference. Designing a single multifunctional ligand presents a promising and convenient strategy for selecting surface ligands that can enhance the performance of LEDs or other optoelectronic devices.