This is a demo store. No orders will be fulfilled.
Separation of anti-TMV active components and modes of action of Omphalia lapidescens
Background Omphalia lapidescens is a saprophytic and parasitic fungus belonging to the Polypora genus of Tricholomataceae . It has repellent, insecticidal, anti-inflammatory and immunomodulatory effects. Result This study found that the extract of O. lapidescens had significant anti-TMV activity, and the main active component was homopolysaccharide LW-1 by Bioassay-guided fractionation. LW-1 is a glucan with β-(1,3) glucoside bond as the main chain and β-(1,6) glucoside bond as the branch chain, with molecular weight in the range of 172,916–338,827 Da. The protective and inactive efficacies of LW-1(100 mg/L) against TMV were 78.10% and 48.20%, but had no direct effect on the morphology of TMV particles. The results of mechanism of action showed that LW-1 induced the increase of the activity of defense enzymes such as POD, SOD and PAL in Nicotiana glutinosa . The overexpression of resistance genes such as NPR1, PR1 and PR5 , and the increase of SA content. Further transcriptome sequencing showed that LW-1 activated MAPK signaling pathway, plant-pathogen interaction pathway and glucosinolide metabolic pathway in Arabidopsis thaliana . Besides, LW-1 induced crops resistance against plant pathogenic fungi. Conclusion Taken together, the anti-TMV mechanism of LW-1 was to activate MAPK signaling pathway, inducing overexpression of resistance genes, activating plant immune system, and improving the synthesis and accumulation of plant defencins such as glucosinolide. LW-1-induced plant disease resistance has the advantages of broad spectrum and long duration, which has the potential to be developed as a new antiviral agent or plant immune resistance inducer.