This is a demo store. No orders will be fulfilled.
Development of Novel Star-Like Branched-Chain Acrylamide (AM)-Sodium Styrene Sulfonate (SSS) Copolymers for Heavy Oil Emulsion Viscosity Reduction and Its Potential Application in Enhanced Oil Recovery
Injecting water with chemicals to generate emulsions in the reservoir is a promising method for enhancing heavy oil recovery because oil-in-water (O/W) emulsions significantly reduce oil viscosity. To enhance heavy oil recovery efficiency, we developed new star-like branched AM-SSS copolymers (SB-PAMs) with reduction in the viscosity of the heavy oil emulsion, which was synthesized by reversible addition–fragmentation chain transfer (RAFT) controlled radical polymerization. The core structure of the branched polymer was RAFT polymerization of acrylamide (AM) and N,N′-methylene bis-acrylamide (BisAM), in the presence of 3-(((benzylthio)carbonothioyl)thio)propanoic acid as a chain transfer agent, followed by chain extension with AM and SSS. The core structures were achieved by incorporation of total monomer ratios [BisAM]/[AM] of 1:11. The expansion of the core structures by copolymerization of AM and SSS resulted in star-like branched polymer SB-PAM-co-SSS with apparent molecular weights ranging from 240 to 2381 kDa. 1H-nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) confirmed the synthesized polymer structure. The molecular weight was determined by gel permeation chromatography (GPC). The polydispersity coefficient was between 1 and 7, which has a broad molecular weight distribution. The polymer dissolves only 0.75 h in deionized water, faster than conventional polyacrylamide. At 50 °C, the viscosity of the 1000 mg/L SB-polymer solution can reach up to 45 mPa·s. First, heavy oil viscosity reduction by 800 mg/L SB polymer can reach 91.7%, at a water dehydration rate of 90.4%; second, with 0.6 PV injection, 800 mg/L SB polymer improved oil recovery up to 23.66% after water flooding; and third, SB-polymer-assisted hot water flooding shows that heavy oil recovery improved by 19.46% at 110 °C with 0.6 pore volume (PV) SB-polymer injection. This novel branched chain polymer with heavy oil emulsion capability will shed light on high-temperature polymer flooding and the development of a new candidate structure for heavy oil viscosity reduction.