This is a demo store. No orders will be fulfilled.
PVF composite conductive nanofibers-based organic electrochemical transistors for lactate detection in human sweat
The detection of lactate and other bioactive molecules is of great significance in biological research, medical testing, and environmental monitoring. Organic electrochemical transistors are a kind of biosensor devices, which can convert biological signals into electrical signals. In recent years, fiber-based organic electrochemical transistors (FECTs) provide a new approach for the construction of flexible wearable biosensors, promoting greatly the development of flexible wearable electronic products. In this study, a multilayer composite electrode was first prepared by incorporating MXene and PEDOT:PSS onto electrospun oriented polyvinyl formal (PVF) nanofiber bundle, and then assembled into FECT with high sensitivity and selectivity . Meanwhile, a wearable real-time monitoring platform was built to detect the lactate concentrations in human sweat. The results showed that MXene could act as a bridge between PEDOT:PSS and PVF, and the sensing performance of PVF/MXene/PEDOT:PSS-based FECT was enhanced obviously. It had a wide linear response range of 1 nM-100 mM, a sensitivity of 0.442 NCR/decade, a quick response time of 0.5 s, a low detection concentration, an excellent reproducibility, and a superior anti-interference characteristic. Therefore, this work provided more possibilities for the development of wearable biosensor.