This is a demo store. No orders will be fulfilled.

Superhydrophilic Poly(2-hydroxyethyl methacrylate) Hydrogel with Nanosilica Covalent Coating: A Promising Contact Lens Material for Resisting Tear Protein Deposition and Bacterial Adhesion

ACS Biomaterials Science & Engineering [2023]
Tao Ouyang, Shuxian Su, Haotian Deng, Yuying Liu, Lishu Cui, Jianhua Rong, Jianhao Zhao
ABSTRACT

Tear protein deposition and bacterial adhesion are the main drawbacks of the hydrogel contact lens. In this study, we developed a novel superhydrophilic poly(2-hydroxyethyl methacrylate) (NSCC-pHEMA) hydrogel with nanosilica covalent coating by the combination of colloidal silica immersion and dehydration treatment. The infrared spectroscopy and energy dispersive X-ray spectroscopy analyses confirmed the successful formation of Si–O covalent bonding between nanosilica and pHEMA hydrogel. This coating was highly stable against powerful sonication or long-term shaking immersion treatment. Among various NSCC-pHEMA hydrogels with different colloidal silica concentrations, the 7%NSCC-pHEMA hydrogel generated a superhydrophilic micro wrinkle surface with a root-mean-square roughness of 43.10 nm, which dramatically reduced the deposition of lysozyme and bovine serum albumin by 65% and 57%, respectively, and decreased the adhesion of S. aureus and E. coli by 59% and 66%, respectively, in comparison to the pHEMA hydrogel. However, the nanosilica coating had little effect on the mechanical properties, light transmittance, oxygen permeability, and equilibrium water content of the pHEMA hydrogel. NSCC-pHEMA hydrogels were nontoxic to both mouse fibroblasts (L929) and human immortalized keratinocytes (HaCaT). Thus, the superhydrophilic NSCC-pHEMA hydrogel is a potential contact lens material for resisting tear protein deposition and bacterial adhesion.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.