This is a demo store. No orders will be fulfilled.

Flow injection analysis coupled with photoelectrochemical immunoassay for simultaneous detection of anti-SARS-CoV-2-spike and anti-SARS-CoV-2-nucleocapsid antibodies in serum samples

ANALYTICA CHIMICA ACTA [2023]
Ruimin Wang, Shuai Wang, Wanze Guo, Tiantian Zhang, Qing Kang, Pengcheng Wang, Feimeng Zhou, Lixia Yang
ABSTRACT

A thin-layer flow cell of low internal volume (12 μL) is incorporated in a flow injection analysis (FIA) system for simultaneous and real-time photoelectrochemical (PEC) immunoassay of anti-SARS-CoV-2 spike 1 (S1) and anti-SARS-CoV-2 nucleocapsid (N) antibodies. Covalent linkage of S1 and N proteins to two separate polyethylene glycol (PEG)-covered gold nanoparticles (AuNPs)/TiO 2 nanotube array (NTA) electrodes affords 10 consecutive analyses with surface regenerations in between. An indium tin oxide (ITO) allows visible light to impinge onto the two electrodes. The detection limits for anti-S1 and anti-N antibodies were estimated to be 177 and 97 ng mL −1 , respectively. Such values compare well with those achieved with other reported methods and satisfy the requirement for screening convalescent patients with low antibody levels. Additionally, our method exhibits excellent intra-batch (RSD = 1.3%), inter-batch (RSD = 3.4%), intra-day (RSD = 1.0%), and inter-day (RSD = 1.6%) reproducibility. The obviation of an enzyme label and continuous analysis markedly decreased the assay cost and duration, rendering this method cost-effective. The excellent anti-fouling property of PEG enables accuracy validation by comparing our PEC immunoassays of patient sera to those of ELISA . In addition, the simultaneous detection of two antibodies holds great potential in disease diagnosis and immunity studies.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.