This is a demo store. No orders will be fulfilled.

Optimization of Antibacterial Activity and Biosafety through Ultrashort Peptide/Cyclodextrin Inclusion Complexes

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES [2023]
Hang Liu, Lin Wang, Chen Yao
ABSTRACT

Engineered ultrashort peptides, serving as an alternative to natural antimicrobial peptides, offer benefits of simple and modifiable structures, as well as ease of assembly. Achieving excellent antibacterial performance and favorable biocompatibility through structural optimization remains essential for further applications. In this study, we assembled lipoic acid (LA)–modified tripeptide RWR (LA–RWR) with β–cyclodextrin (β–CD) to form nano–inclusion complexes. The free cationic tripeptide region in the nano–inclusion complex provided high antibacterial activity, while β–CD enhanced its biocompatibility. Compared with peptides (LA–RWR, LA–RWR–phenethylamine) alone, inclusion complexes exhibited lower minimum inhibitory concentrations/minimum bactericidal concentrations (MICs/MBCs) against typical Gram–negative/Gram–positive bacteria and fungi, along with improved planktonic killing kinetics and antibiofilm efficiency. The antibacterial mechanism of the nano–inclusion complexes was confirmed through depolarization experiments, outer membrane permeability experiments, and confocal laser scanning microscopy observations. Furthermore, biological evaluations indicated that the hemolysis rate of the inclusion complexes decreased to half or even lower at high concentrations, and cell viability was superior to that of the non–included peptides. Preliminary in vivo studies suggested that the inclusion complexes, optimized for antibacterial activity and biosafety, could be used as promising antibacterial agents for potential applications.Keywords:antimicrobial peptide;β–cyclodextrin;inclusion complexes;antibacterial activity;biosafety

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.