This is a demo store. No orders will be fulfilled.

Textile Waste-Derived Cobalt Nanoparticles Embedded in Active Carbon Fiber for Efficient Activation of Peroxymonosulfate to Remove Organic Pollutants

Nanomaterials [2023]
Peiyuan Xiao, Ying Wang, Huanzheng Du, Zhiyong Yan, Bincheng Xu, Guangming Li
ABSTRACT

Burning and dumping textile wastes have caused serious damage to the environment and are a huge waste of resources. In this work, cobalt nanoparticles embedded in active carbon fiber (Co/ACF) were prepared from bio-based fabric wastes, including cotton, flax and viscose. The obtained Co/ACF was applied as a catalyst for the heterogeneous activation of peroxymonosulfate (PMS) to remove bisphenol A (BPA) from an aqueous solution. The results showed that cotton-, flax- and viscose-derived Co/ACF all exhibited excellent performance for BPA degradation; over ~97.0% of BPA was removed within 8 min. The Co/ACF/PMS system exhibited a wide operating pH range, with a low consumption of the catalyst (0.1 g L−1) and PMS (0.14 g L−1). The high specific surface area (342 m2/g) and mesoporous structure of Co/ACF allowed the efficient adsorption of pollutants as well as provided more accessible active sites for PMS activation. This study provided an example of using textile wastes to produce a valuable and recyclable catalyst for environmental remediation.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.