This is a demo store. No orders will be fulfilled.
An engineered nanoplatform inhibiting energy metabolism and lysosomal activity of tumor cells to multiply cisplatin-based chemotherapy
Although inhibiting the energy metabolism of tumor cells has become an effective measure to enhance chemotherapy, tumor cells can still escape the lethal effect of chemotherapy by entering a dormancy state with low-energy expenditure. Herein, the glutathione (GSH)-responsive nanoplatform (C-A-D NPs) were constructed to inhibit energy metabolism and lysosomal activity of tumor cells, thereby forcing tumor cells to remain vulnerable to cisplatin . In this system, cisplatin prodrug was reduced to cisplatin by GSH, and D-peptide and apoptozole (Az) were released to inhibit the energy metabolism and autophagy-lysosome pathway of tumor cells. The suppressed autophagy-lysosome pathway prevents tumor cells from entering a low-energy dormancy state, resulting in the loss of resistance to the lethal effect of cisplatin with high-energy expenditure and insufficient energy supply. Such engineered nanoplatform effectively enhances the chemotherapeutic effect of cisplatin by inhibiting intracellular energy metabolism and lysosomal activity, showing great clinical prospects.