This is a demo store. No orders will be fulfilled.

Facile Synthesis and Multiple Application of Ultralong-Afterglow Room Temperature Phosphorescence Aggregate Carbon Dots from Simple Raw Materials

JOURNAL OF FLUORESCENCE [2023]
Zhu Wenping, Wang Like, Yang Weijie, Chen Yahong, Liu Zengchen, Li Yanxia, Xue Yingying
ABSTRACT

Owing to the ultralong afterglow, room temperature decay phosphorescence nanomaterials have aroused enough attention. In the work, by simple one-pot solid-state thermal decomposition reaction, aggregate carbon dots (CDs) was prepared from trimesic and boric acid. Based on the intermolecular hydrogen bonds and intramolecular π-π stacking weak interaction from precursors, CDs was encapsulated in boron oxide matrix and formed aggregation. The aggregate state of CDs facilitated the triplet excited states (Tn), which could induce the room temperature decay phosphorescence properties. By careful investigation, under different excitation wavelengths at 254 and 365 nm, the aggregate CDs showed > 15 s and > 3 s room temperature phosphorescence emission in the naked eye, which was associated with 1516.12 ms and 718.62 ms lifetime respectively. And the aggregate CDs exhibited widespread application in encoding encryption, optical anti-counterfeiting and fingerprint identification etc. The interesting aggregate CDs revealed unexpected ultralong-afterglow room temperature decay phosphorescence properties and the work opened a window for constructing ultralong-afterglow room temperature decay phosphorescence aggregate CDs nanomaterials.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.