This is a demo store. No orders will be fulfilled.

Highly Stable Fluorescent-Traffic-Light Sensor for Point-of-Care Detection of Tetracycline

ACS Sensors [2023]
Ting Zhu, Jinyang Chen, Shasha Zeng, Jintao Chen, Chunjiao Qi
ABSTRACT

Fluorescent point-of-care (POC) sensors have found great utility in fields like clinical diagnosis, food testing, and environmental monitoring. Herein, we developed a highly stable POC sensor that enabled the visual detection of tetracycline (TC) in a distinct fluorescent-traffic-light manner. In the sensor, a composite material of copper nanoclusters and metal–organic framework (CuNCs@MOF-5) prepared with a facile one-pot synthetic strategy was employed as the core element for target recognition and signal transduction. As evidenced by experiments, the as-prepared CuNCs@MOF-5 exhibited significantly improved fluorescence properties in terms of emission enhancement (about 28-fold) and stability improvement (over 110 days) compared to the CuNCs without confining and protection by MOF-5. More importantly, it was found that TC could uniquely interact with Zn(II) to trigger the disassembly of CuNCs@MOF-5, resulting in green fluorescence emission from the TC–Zn(II) complex and red fluorescence weakening of CuNCs. On the basis of this finding, a simple and stable sensor was proposed for POC detection of TC, which demonstrated high sensitivity, selectivity, and reproducibility. In addition to homogeneous visual detection in a 96-well plate, a CuNCs@MOF-5-contained agarose gel array was easily fabricated to achieve direct detection of TC in milk without any pretreatment, thanks to the size-sieving effect of the gel. Moreover, a test paper array was also put forward for low-cost TC detection, which indicates the extensibility and practicability of this sensing strategy.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.