This is a demo store. No orders will be fulfilled.

Hyperstable Eutectic Core-Spun Fiber Enabled Wearable Energy Harvesting and Personal Thermal Management Fabric

ADVANCED MATERIALS [2023]
Zhouquan Sun, Yunhao Hu, Wei Wei, Yaogang Li, Qinghong Zhang, Kerui Li, Hongzhi Wang, Chengyi Hou
ABSTRACT

Electronic textiles have gradually evolved into one of the most important mainstays of flexible electronics owing to their good wearability. However, textile multifunctionality is generally achieved by stacking functional modules, which is not conducive to wearability. Integrating these modules into a single fiber provides a better solution. In this work, a core-spun functional fiber (CSF) constructed from hyper-environmentally stable Zn-based eutectogel as the core layer and polytetrafluoroethylene as the sheath is designed. The CSF achieves a synergistic output effect of piezoelectricity-enhanced triboelectricity, as well as reliable hydrophobicity, and high mid-infrared emissivity and visible light reflectivity. A monolayer functionalized integrated textile is woven from the CSF to enable effective energy (mechanical and droplet energy) harvesting and personal thermal management functions. Furthermore, scenarios for the energy supply, motion detection, and outdoor use of electronic fabrics for electronics applications are demonstrated, opening new avenues for the functional integration of electronic textiles.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.