This is a demo store. No orders will be fulfilled.
Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications
Dwindling energy sources and a worsening environment are huge global problems, and biomass wastes are an under-exploited source of material for both energy and material generation. Herein, self-template decoction dregs of Ganoderma lucidum -derived porous carbon nanotubes (ST-DDLGCs) were synthesized via a facile and scalable strategy in response to these challenges. ST-DDLGCs exhibited a large surface area (1731.51 m 2 g −1 ) and high pore volume (0.76 cm 3 g −1 ), due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls. In the ST-DDLGC/PMS system, the degradation efficiency of capecitabine (CAP) reached ∼97.3 % within 120 min. Moreover, ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9, and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies (i.e., H 2 PO 4 − , NO 3 − , Cl − and HCO 3 − ), in which a 1 O 2 -dominated oxidation was identified and non-radical mechanisms were deduced. Additionally, ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance, with specific capacitances of up to 328.1 F g −1 at 0.5 A g −1 , and cycling stability of up to 98.6 % after 10,000 cycles at a current density of 2 A g −1 . The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure, which facilitated mass transfer and presented numerous active sites. The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices.