This is a demo store. No orders will be fulfilled.
Graphene oxide enabled efficient multi-enzyme immobilization for thermodynamic-driven biomanufacturing of fructose
Thermodynamic-driven biomanufacturing of fructose catalyzed by phosphorylation and dephosphorylation cascade reactions is considered as the future of industrial fructose production due to its high theoretical yield of 100 %. Co-immobilizing all four cascade enzymes involved on solid materials is crucial for its successful industrial application, as it significantly reduces costs through enzyme reusage. Graphene oxide served as a multi-enzyme carrier in the thermodynamic-driven biosystem of fructose and displayed high loading capacities for the four cascade enzymes. The resulting co-immobilized biosystem based on graphene oxide exhibited superior biocatalytic performance than the other support materials. Additionally, it yielded 54.7 % fructose from maltodextrin . Utilizing two additional enzymes to improve the substrate utilization, an 85.2 % fructose yield was achieved, surpassing the current industrial-scale fructose production process employing monosaccharide isomerization . This study sheds light on the potential industrial applications of thermodynamic-driven biomanufacturing systems for fructose production.