Determine the necessary mass, volume, or concentration for preparing a solution.
This is a demo store. No orders will be fulfilled.
| SKU | Size | Availability |
Price | Qty |
|---|---|---|---|---|
|
E433135-25g
|
25g |
3
|
$577.90
|
|
|
E433135-500g
|
500g |
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
|
$2,253.90
|
|
| Synonyms | Ethyl methyl carbonate, 99.9%, acid <10 ppm, H2O <10ppm | Methyl Ethyl Carbonate | Ester solvent | Ethoxyacetic acid, methyl ester | J-521268 | Carbonic Acid Ethyl Methyl Ester | EMC; Ethyl methyl carbonate; Ethylene methyl carbonate; Methyl ethyl carbona |
|---|---|
| Specifications & Purity | ≥99.9%, acid value<10ppm, H2O<10ppm |
| Legal Information | MU Ionic Solutions Corp |
| Storage Temp | Argon charged |
| Shipped In | Normal |
| Product Description |
Application Alkyl carbonates find applications as solvents for lithium ion battery electrolytes and the use of high quality battery grade electrolytes having extremely low water (<10 ppm) and acid (<10 ppm) contents are critical for achieving high electrochemical performance. |
Taxonomy Tree
| Kingdom | Organic compounds |
|---|---|
| Superclass | Organic acids and derivatives |
| Class | Organic carbonic acids and derivatives |
| Subclass | Carbonic acid diesters |
| Intermediate Tree Nodes | Not available |
| Direct Parent | Carbonic acid diesters |
| Alternative Parents | Organic oxides Hydrocarbon derivatives Carbonyl compounds |
| Molecular Framework | Aliphatic acyclic compounds |
| Substituents | Carbonic acid diester - Organic oxygen compound - Organic oxide - Hydrocarbon derivative - Organooxygen compound - Carbonyl group - Aliphatic acyclic compound |
| Description | This compound belongs to the class of organic compounds known as carbonic acid diesters. These are compounds comprising the carbonic acid diester functional group. |
| External Descriptors | Not available |
|
|
|
| Pubchem Sid | 504759110 |
|---|---|
| Pubchem Sid Url | https://pubchem.ncbi.nlm.nih.gov/substance/504759110 |
| IUPAC Name | ethyl methyl carbonate |
| INCHI | InChI=1S/C4H8O3/c1-3-7-4(5)6-2/h3H2,1-2H3 |
| InChIKey | JBTWLSYIZRCDFO-UHFFFAOYSA-N |
| Smiles | CCOC(=O)OC |
| Isomeric SMILES | CCOC(=O)OC |
| WGK Germany | 3 |
| UN Number | 3272 |
| Packing Group | III |
| Molecular Weight | 104.1 |
| Beilstein | 3(4)4 |
| Reaxy-Rn | 1742929 |
| Reaxys-RN_link_address | https://www.reaxys.com/reaxys/secured/hopinto.do?context=S&query=IDE.XRN=1742929&ln= |
Find and download the COA for your product by matching the lot number on the packaging.
| Lot Number | Certificate Type | Date | Item |
|---|---|---|---|
| Certificate of Analysis | Feb 17, 2025 | E433135 | |
| Certificate of Analysis | Feb 15, 2025 | E433135 | |
| Certificate of Analysis | May 23, 2023 | E433135 | |
| Certificate of Analysis | May 22, 2023 | E433135 | |
| Certificate of Analysis | May 20, 2023 | E433135 |
| Sensitivity | Heat & Moisture sensitive |
|---|---|
| Refractive Index | 1.3697 |
| Flash Point(°F) | 73.4 °F |
| Flash Point(°C) | 23 °C |
| Boil Point(°C) | 90.2°C |
| Melt Point(°C) | 2-4°C |
| Molecular Weight | 104.100 g/mol |
| XLogP3 | 0.900 |
| Hydrogen Bond Donor Count | 0 |
| Hydrogen Bond Acceptor Count | 3 |
| Rotatable Bond Count | 3 |
| Exact Mass | 104.047 Da |
| Monoisotopic Mass | 104.047 Da |
| Topological Polar Surface Area | 35.500 Ų |
| Heavy Atom Count | 7 |
| Formal Charge | 0 |
| Complexity | 60.000 |
| Isotope Atom Count | 0 |
| Defined Atom Stereocenter Count | 0 |
| Undefined Atom Stereocenter Count | 0 |
| Defined Bond Stereocenter Count | 0 |
| Undefined Bond Stereocenter Count | 0 |
| The total count of all stereochemical bonds | 0 |
| Covalently-Bonded Unit Count | 1 |
| 1. Suwanda Arachchige Don Rumesh Madhusanka, Jiaxing Qi, Nan Chen, Boyu Wang, Guobao Xu, Decheng Li, Hongyu Wang. (2024) LiNi0.5Mn1.5O4 Joins to Alleviate Self-Discharge of Anion-Graphite Intercalation Compounds. LANGMUIR, 40 (2): (1418–1424). |
| 2. Hao Wu, Wenfang Feng, Michel Armand, Zhibin Zhou, Heng Zhang. (2023) Lithium Bis(fluorosulfonyl)imide for Stabilized Interphases on Conjugated Dicarboxylate Electrode. ACS Applied Materials & Interfaces, |
| 3. Nanjie Chen, Dongchu Chen, Jingshu Wu, Yuekun Lai, Dongyang Chen. (2023) Polyethylene glycol modified tetrathiafulvalene for high energy density non-aqueous catholyte of hybrid redox flow batteries. CHEMICAL ENGINEERING JOURNAL, 462 (141996). |
| 4. Juan Xu, Kai Li, Lanxiang Liu, Jinju Ma, Hong Zhang. (2023) Tannic acid – a bridge and suspending agent for lithium cobalt oxide and reduced graphene oxide: a lodestar for lithium-ion batteries. ENVIRONMENTAL TECHNOLOGY, |
| 5. Zhuo Wang, Quanbing Pei, Mengmeng Wang, Junjun Tan, Shuji Ye. (2023) Observing Nonpreferential Absorption of Linear and Cyclic Carbonate on the Silicon Electrode. LANGMUIR, 39 (5): (2015–2021). |
| 6. Zhaoyang Qi, Songyu Li, Yaxin Cai, Rongkai Cui, Jie Chen, Changshen Ye, Ting Qiu. (2023) DBU-assisted expeditious synthesis of highly stable IL@ZIFs intergrowth composite: A nanocatalyst for EMC production. FUEL, 334 (126659). |
| 7. He Yang, Tingting Qin, Xinyan Zhou, Yu Feng, Zizhun Wang, Xin Ge, Nailin Yue, Dabing Li, Wei Zhang, Weitao Zheng. (2022) Boosting the kinetics of PF6− into graphitic layers for the optimal cathode of dual-ion batteries: The rehearsal of pre-intercalating Li+. Journal of Energy Chemistry, 71 (392). |
| 8. Shufeng Song, Weiling Gao, Guanming Yang, Yanfang Zhai, Jianyao Yao, Liyang Lin, Weiping Tang, Ning Hu, Li Lu. (2022) Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Materials Today Energy, 23 (100893). |
| 9. Weixia Lv, Caijian Zhu, Jun Chen, Caixia Ou, Qian Zhang, Shengwen Zhong. (2021) High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives. CHEMICAL ENGINEERING JOURNAL, 418 (129400). |
| 10. Chao Li, Banggui Lao, Zhike Li, Huibin Yin, Zhenyu Yang, Hongyu Wang, Deliang Chen, Xiaoli Zhang, Yongjun Xu, Chenghua Sun. (2020) Dual-ion battery with MoS2 cathode. Energy Storage Materials, 32 (159). |
| 11. Wenjuan Han, Ming Lu, Junnan Chen, Haojie Li, Haibo Li, Bingsen Zhang, Wei Zhang, Weitao Zheng. (2020) Activating an MXene as a host for EMIm+ by electrochemistry-driven Fe-ion pre-intercalation. Journal of Materials Chemistry A, 8 (32): (16265-16270). |
| 12. Lei Zhang, Hui Fan, Hongyu Wang. (2020) Methyl acetate–based solutions for dual–ion batteries. ELECTROCHIMICA ACTA, 342 (135992). |
| 13. Yunju Wang, Jiayu Li, Yuhao Huang, Hongyu Wang. (2019) Anion Storage Behavior of Graphite Electrodes in LiBF4/Sulfone/Ethyl Methyl Carbonate Solutions. LANGMUIR, 35 (46): (14804–14811). |
| 14. Dandan Zhu, Lei Zhang, Yuhao Huang, Jiayu Li, Hui Fan, Hongyu Wang. (2019) Ethylmethyl Carbonate’s Role in Hexafluorophosphate Storage in Graphite Electrodes. ACS Applied Energy Materials, 2 (11): (8031–8038). |
| 15. Lei Zhang, Hongyu Wang. (2019) Dual-Graphite Batteries with Flame-Retardant Electrolyte Solutions. ChemElectroChem, 6 (17): (4637-4644). |
| 16. Yang Dong, Ning Zhang, Cuixia Li, Yanfei Zhang, Ming Jia, Yuanyuan Wang, Yaran Zhao, Lifang Jiao, Fangyi Cheng, Jianzhong Xu. (2019) Fire-Retardant Phosphate-Based Electrolytes for High-Performance Lithium Metal Batteries. ACS Applied Energy Materials, 2 (4): (2708–2716). |
| 17. He Yang, Xiaoyuan Shi, Ting Deng, Tingting Qin, Lu Sui, Ming Feng, Hong Chen, Wei Zhang, Weitao Zheng. (2018) Carbon-Based Dual-Ion Battery with Enhanced Capacity and Cycling Stability. ChemElectroChem, 5 (23): (3612-3618). |
| 18. Shuai Wang, Xiang Xiao, Chaopeng Fu, Jiguo Tu, Yuanyuan Tan, Shuqiang Jiao. (2018) Room temperature solid state dual-ion batteries based on gel electrolytes. Journal of Materials Chemistry A, 6 (10): (4313-4323). |
| 19. Pei Li, Shuo Yang, Jiaxiong Zhu, Shengnan Wang, Yue Hou, Huilin Cui, Ze Chen, Rong Zhang, Zhuoxi Wu, Yiqiao Wang, Zhiquan Wei, Xinghui Liu, Shaoce Zhang, Xinliang Li, Chunyi Zhi. (2024) Achieving high-concentration Cl− ions in non-aqueous electrolytes for high-energy-density Li-Cl2 batteries. Matter, 7 (1867-1878). |
| 20. Weikang Mei, Guobao Xu, Hongyu Wang. (2024) Cooperation Between Methyl Acetate Solvent and Binder Remarkably Improves the Low-Temperature Performance of the LiNi0.5Mn1.5O4 Cathode. Journal of Physical Chemistry C, 128 (41): (17353-17360). |
| 21. Nan Hu, Lijuan Su, Hongyan Li, Ning Zhang, Yongqin Qi, Hongliang Wang, Xiaojing Cui, Xianglin Hou, Tiansheng Deng. (2024) Degradation of polycarbonate waste to recover bisphenol A and dimethyl carbonate using urea as a cheap green catalyst. GREEN CHEMISTRY, |
| 22. Jinxiu Chen, Fangfang Wang, Xiaozhong Fan, Jinhao Zhang, Yusheng Zhao, Wei Xia, Yibo Yan, Yingze Song, Fengchao Rao, Long Kong. (2024) Disassociating Lithium Salts in Deep Eutectic Solvents and Inhibiting Aluminum Corrosion for Low-Temperature Lithium–Metal Batteries. ENERGY & FUELS, 38 (15): (14696-14703). |
| 23. Mu Yongbiao, Liao Zifan, Chu Youqi, Zhang Qing, Zou Lingfeng, Yang Lin, Feng Yitian, Ren Haixiang, Han Meisheng, Zeng Lin. (2025) Electron Acceptor-Driven Solid Electrolyte Interphases with Elevated LiF Content for 4.7 V Lithium Metal Batteries. Nano-Micro Letters, 17 (1): (1-20). |
| 24. Zhongming Wang, Zhiyuan He, Zhongsheng Wang, Kecheng Long, Jixu Yang, Shaozhen Huang, Zhibin Wu, Lin Mei, Libao Chen. (2025) Engineering the Solid Electrolyte Interphase for Enhancing High-Rate Cycling and Temperature Adaptability of Lithium-Ion Batteries. Chemical Science, |
| 25. Bang Li, Tingjin Zhou, Honghuai Sun, Qingming Song, Ya Liu, Jia Li, Zhenming Xu. (2024) Hazardous Electrolyte Releasement and Transformation Mechanism During Water Protected Spent Lithium-Ion Batteries Crushing. JOURNAL OF HAZARDOUS MATERIALS, (137036). |
| 26. Chengyao Zhuge, Yaping Wang, Qian Qian, Shunyang Li, Wangyang Lu, Nan Li. (2024) High-strength antifreezing flexible conductive polyvinyl alcohol hydrogel sensors co-reinforced with silk porous mesh fabric and silk nanofibers. JOURNAL OF POLYMER SCIENCE, |
| 27. Guo Yaqing, Guo Chi, Li Penghui, Song Wenjun, Huang Weiyuan, Yan Junxin, Liao Xiaobin, He Kun, Sha Wuxin, Zeng Xuemei, Tang Xinyue, Ren QingQing, Wang Shun, Amine Khalil, Nie Anmin, Liu Tongchao, Yuan Yifei. (2025) Improving the fast-charging capability of NbWO-based Li-ion batteries. Nature Communications, 16 (1): (1-13). |
| 28. Yuying Liu, Tao Huang, Zhencheng Huang, Weiyuan Huang, Jing Chen, Hao Jia, Xuanlong He, Weibin Chen, Haoran Wei, Liewu Li, Xiangzhong Ren, Xiaoping Ouyang, Jianhong Liu, Shenghua Ye, Xuming Yang, Feng Pan, Qianling Zhang, Jiangtao Hu. (2024) In Situ Formed Continuous and Dense Inorganic Borate-Based SEI for High-Performance Li-Metal Batteries. Small, (2406400). |
| 29. Chunfeng Meng, Zichuang Jiao, Mingjia Fang, Junfeng Chen, Heng Luo, Aihua Yuan. (2024) LiF-Rich Solid Electrolyte Interfaces Guarantee the Cycle Stability of Metal-Organic Frameworks for Lithium Storage. Energy Technology, 12 (7): (2400188). |
| 30. Weikang Mei, Nan Chen, Boyu Wang, Guobao Xu, Hongyu Wang. (2024) Methyl Acetate Boosts the Low-Temperature Performance of Li4Ti5O12/Graphite Dual-Ion Batteries. LANGMUIR, 40 (22): (11541-11547). |